Copied to
clipboard

G = C925C3order 243 = 35

5th semidirect product of C92 and C3 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C925C3, C33.10C32, C32.28C33, C9⋊C97C3, C32⋊C9.12C3, (C3×C9).11C32, C3.10(C9○He3), SmallGroup(243,45)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — C925C3
C1C3C32C3×C9C92 — C925C3
C1C32 — C925C3
C1C32 — C925C3
C1C32C32 — C925C3

Generators and relations for C925C3
 G = < a,b,c | a9=b9=c3=1, ab=ba, cac-1=ab3, cbc-1=a6b >

9C3
3C9
3C32
3C32
3C32
3C9
3C9
3C9
3C32
3C9
3C9
3C9
3C9
3C9
3C9
3C9
3C9

Smallest permutation representation of C925C3
On 81 points
Generators in S81
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 46 68 41 56 29 80 15 23)(2 47 69 42 57 30 81 16 24)(3 48 70 43 58 31 73 17 25)(4 49 71 44 59 32 74 18 26)(5 50 72 45 60 33 75 10 27)(6 51 64 37 61 34 76 11 19)(7 52 65 38 62 35 77 12 20)(8 53 66 39 63 36 78 13 21)(9 54 67 40 55 28 79 14 22)
(2 81 42)(3 43 73)(5 75 45)(6 37 76)(8 78 39)(9 40 79)(10 63 47)(11 54 58)(12 15 18)(13 57 50)(14 48 61)(16 60 53)(17 51 55)(19 70 28)(20 26 23)(21 33 69)(22 64 31)(24 36 72)(25 67 34)(27 30 66)(29 35 32)(46 49 52)(56 59 62)(65 71 68)

G:=sub<Sym(81)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,46,68,41,56,29,80,15,23)(2,47,69,42,57,30,81,16,24)(3,48,70,43,58,31,73,17,25)(4,49,71,44,59,32,74,18,26)(5,50,72,45,60,33,75,10,27)(6,51,64,37,61,34,76,11,19)(7,52,65,38,62,35,77,12,20)(8,53,66,39,63,36,78,13,21)(9,54,67,40,55,28,79,14,22), (2,81,42)(3,43,73)(5,75,45)(6,37,76)(8,78,39)(9,40,79)(10,63,47)(11,54,58)(12,15,18)(13,57,50)(14,48,61)(16,60,53)(17,51,55)(19,70,28)(20,26,23)(21,33,69)(22,64,31)(24,36,72)(25,67,34)(27,30,66)(29,35,32)(46,49,52)(56,59,62)(65,71,68)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,46,68,41,56,29,80,15,23)(2,47,69,42,57,30,81,16,24)(3,48,70,43,58,31,73,17,25)(4,49,71,44,59,32,74,18,26)(5,50,72,45,60,33,75,10,27)(6,51,64,37,61,34,76,11,19)(7,52,65,38,62,35,77,12,20)(8,53,66,39,63,36,78,13,21)(9,54,67,40,55,28,79,14,22), (2,81,42)(3,43,73)(5,75,45)(6,37,76)(8,78,39)(9,40,79)(10,63,47)(11,54,58)(12,15,18)(13,57,50)(14,48,61)(16,60,53)(17,51,55)(19,70,28)(20,26,23)(21,33,69)(22,64,31)(24,36,72)(25,67,34)(27,30,66)(29,35,32)(46,49,52)(56,59,62)(65,71,68) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,46,68,41,56,29,80,15,23),(2,47,69,42,57,30,81,16,24),(3,48,70,43,58,31,73,17,25),(4,49,71,44,59,32,74,18,26),(5,50,72,45,60,33,75,10,27),(6,51,64,37,61,34,76,11,19),(7,52,65,38,62,35,77,12,20),(8,53,66,39,63,36,78,13,21),(9,54,67,40,55,28,79,14,22)], [(2,81,42),(3,43,73),(5,75,45),(6,37,76),(8,78,39),(9,40,79),(10,63,47),(11,54,58),(12,15,18),(13,57,50),(14,48,61),(16,60,53),(17,51,55),(19,70,28),(20,26,23),(21,33,69),(22,64,31),(24,36,72),(25,67,34),(27,30,66),(29,35,32),(46,49,52),(56,59,62),(65,71,68)]])

C925C3 is a maximal subgroup of   C925S3  C925C6

51 conjugacy classes

class 1 3A···3H3I3J9A···9X9Y···9AN
order13···3339···99···9
size11···1993···39···9

51 irreducible representations

dim11113
type+
imageC1C3C3C3C9○He3
kernelC925C3C92C32⋊C9C9⋊C9C3
# reps1281624

Matrix representation of C925C3 in GL6(𝔽19)

0017000
500000
050000
0001720
000024
0000180
,
010000
001000
700000
0009100
0000101
0000140
,
100000
0110000
007000
000700
00015110
0001601

G:=sub<GL(6,GF(19))| [0,5,0,0,0,0,0,0,5,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,2,2,18,0,0,0,0,4,0],[0,0,7,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,10,10,14,0,0,0,0,1,0],[1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,15,16,0,0,0,0,11,0,0,0,0,0,0,1] >;

C925C3 in GAP, Magma, Sage, TeX

C_9^2\rtimes_5C_3
% in TeX

G:=Group("C9^2:5C3");
// GroupNames label

G:=SmallGroup(243,45);
// by ID

G=gap.SmallGroup(243,45);
# by ID

G:=PCGroup([5,-3,3,3,-3,3,301,276,1352,102]);
// Polycyclic

G:=Group<a,b,c|a^9=b^9=c^3=1,a*b=b*a,c*a*c^-1=a*b^3,c*b*c^-1=a^6*b>;
// generators/relations

Export

Subgroup lattice of C925C3 in TeX

׿
×
𝔽